

Improving Item Cold-start Recommendation via Model-agnostic Conditional Variational Autoencoder

Xu Zhao Tencent News Beijing, China xuzzzhao@tencent.com Yi Ren Tencent News Beijing, China henrybjren@tencent.com Ying Du Tencent News Beijing, China yingdu@tencent.com

Shenzheng Zhang Tencent News Beijing, China qjzcyzhang@tencent.com Nian Wang Tencent News Beijing, China noreenwang@tencent.com

2022 SIGIR

2022. 8. 15 • ChongQing



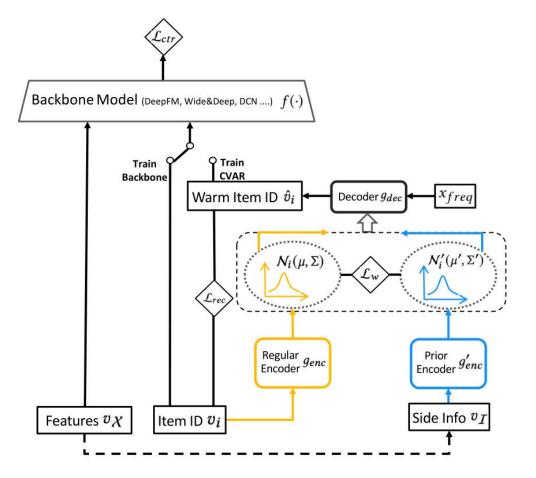


Figure 1: The proposed model-agnostic CVAR Framework, where Backbone Model can be any CTR prediction model with embedding layer.

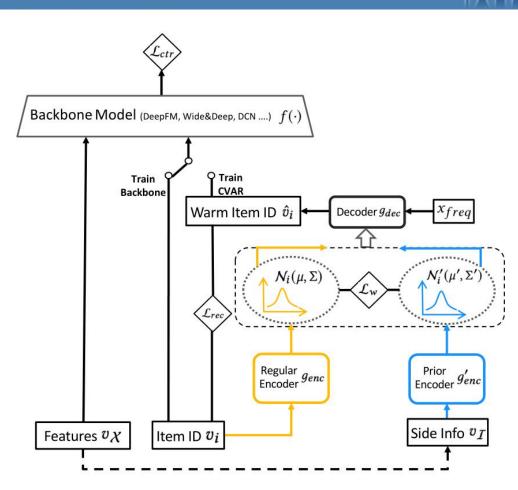


Figure 1: The proposed model-agnostic CVAR Framework, where Backbone Model can be any CTR prediction model with embedding layer.

推土机距离Wasserstein Distance

Advanced Technique of Artificial Intelligence	ATAI
Artificial Intelligence	
	Artificial Intelligence

$$\hat{y} = f(v_i, v_X; \theta) \tag{1}$$

$$\mathcal{L}(\theta, \phi) = -y \log \hat{y} - (1 - y) \log(1 - \hat{y})$$
(2)

$$\mu, \sigma = g_{enc}(v_i; w_{enc}); \mu \in \mathbb{R}^k, \sigma \in \mathbb{R}^k$$
(3)

Method

$$z \sim \mathcal{N}_i(\mu, \Sigma); \Sigma \in \mathbb{R}^{k \times k}, diag(\Sigma) = \sigma$$
 (4)

$$\hat{v}_i = g_{dec}(z, x_{freq}; w_{dec}); \hat{v}_i \in \mathbb{R}^d$$
(5)

$$\mathcal{L}_{rec}(w_{enc}, w_{dec}) = \|v_i - \hat{v}_i\|_2^2$$
(6)

$$\mu', \sigma' = g'_{enc}(v_I; w'_{enc}); \mu' \in \mathbb{R}^k, \sigma' \in \mathbb{R}^k$$
(7)

$$z' \sim \mathcal{N}'_i(\mu', \Sigma'); \Sigma' \in \mathbb{R}^{k \times k}, trace(\Sigma') = \sigma'$$
(8)

$$\hat{v}'_i = g_{dec}(z', x_{freq}; w_{dec}); \hat{v}'_i \in \mathbb{R}^d$$
(9)

$$\mathcal{L}_{w}(w_{enc}, w'_{enc}) = W_2(\mathcal{N}_i(\mu, \Sigma), \mathcal{N}'_i(\mu', \Sigma'))$$
(10)

$$\hat{y}_{warm} = f(\hat{v}'_i, v_X; \theta) \tag{11}$$

$$\mathcal{L}_{warm}(w_{enc}, w_{dec}, w_{enc}') = \mathcal{L}_{ctr} + \alpha \mathcal{L}_{rec} + \beta \mathcal{L}_{w}$$
(13)

 $v_i \in \mathbb{R}^d, v_I \in \mathbb{R}^{d \times |I|} \text{ and } v_X \in \mathbb{R}^{d \times |X|}$

Wasserstein Distance

 $P_1 = 3, P_2 = 2, P_3 = 1, P_4 = 4$

 $Q_1 = 1, Q_2 = 2, Q_3 = 4, Q_4 = 3$

 $\delta_{i+1} = \delta_i + P_i - Q_i$

 $\delta_0 = 0$ $\delta_1 = 0 + 3 - 1 = 2$ $\delta_2 = 2 + 2 - 2 = 2$

$$\delta_3=2+1-4=-1$$

 $\delta_4 = -1 + 4 - 3 = 0$

 $W = \sum |\delta_i| = 5$

Table 1: Model Comparison of cold-start effectiveness on two datasets(*Movielens 1M* and *Taobao Ad*), under two backbones(*DeepFM* and *Wide&Deep*), three runs for each. The best improvements are highlighted in bold.

Methods	Cold phase		Warm-a phase		Warm-b phase		Warm-c phase	
Methods	AUC	F1	AUC	F1	AUC	F1	AUC	F1
Dataset: Movielen	s 1M & Bac	kbone: Dee	рFM					
DeepFM	0.7267	0.6231	0.7424	0.6383	0.7574	0.6503	0.7694	0.6608
DropoutNet	0.7387	0.6339	0.7491	0.6441	0.7587	0.6531	0.7673	0.6599
Meta-E	0.7327	0.6344	0.7441	0.6432	0.7544	0.6519	0.7633	0.6592
MWUF	0.7316	0.6289	0.7462	0.6413	0.7589	0.6521	0.7701	0.6616
CVAR (Init Only)	0.7401	0.6353	0.7518	0.6454	0.7624	0.6547	0.7717	0.6622
CVAR	0.7419	0.6356	0.7927	0.6789	0.8021	0.6856	0.8041	0.6878
Dataset: Movielen	s 1M & Bac	kbone: Wid	le&Deep					
Wide&Deep	0.7071	0.5972	0.7232	0.6164	0.7354	0.6273	0.7461	0.6372
DropoutNet	0.7125	0.6038	0.7228	0.6159	0.7313	0.6244	0.7390	0.6314
Meta-E	0.6727	0.5287	0.7201	0.6120	0.7345	0.6280	0.7450	0.6374
MWUF	0.7063	0.5966	0.7230	0.6157	0.7355	0.6275	0.7459	0.6366
CVAR (Init Only)	0.7020	0.5795	0.7255	0.6160	0.7375	0.6293	0.7473	0.6380
CVAR	0.6937	0.5643	0.7627	0.6525	0.7756	0.6639	0.7840	0.6712
Dataset: Taobao A	d & Backbo	one: DeepFl	й					
DeepFM	0.5983	0.1350	0.6097	0.1378	0.6207	0.1401	0.6311	0.1438
DropoutNet	0.5989	0.1352	0.6098	0.1374	0.6203	0.1396	0.6302	0.1435
Meta-E	0.5982	0.1346	0.6093	0.1377	0.6195	0.1400	0.6294	0.1428
MWUF	0.5986	0.1348	0.6082	0.1374	0.6184	0.1399	0.6279	0.1429
CVAR (Init Only)	0.5987	0.1350	0.6098	0.1376	0.6204	0.1398	0.6306	0.1432
CVAR	0.5978	0.1347	0.6198	0.1408	0.6308	0.1477	0.6380	0.1503
Dataset: Taobao A	d & Backbo	one: Wide&	Deep					
Wide&Deep	0.6081	0.1360	0.6129	0.1427	0.6207	0.1455	0.6287	0.1484
DropoutNet	0.6095	0.1359	0.6184	0.1427	0.6246	0.1454	0.6312	0.1474
Meta-E	0.6082	0.1378	0.6122	0.1443	0.6190	0.1477	0.6259	0.1506
MWUF	0.6089	0.1382	0.6125	0.1423	0.6210	0.1457	0.6285	0.1483
CVAR (Init Only)	0.6027	0.1359	0.6065	0.1429	0.6163	0.1471	0.6232	0.1496
CVAR	0.6051	0.1368	0.6220	0.1457	0.6290	0.1495	0.6336	0.1511

Table 2: CVAR performance(AUC) with different x_{freq} on Movielens1M and Wide&Deep, three runs for each. The best improvements are highlighted in bold.

x_{freq}	Cold	Warm-a	Warm-b	Warm-c
0.01	0.6936	0.7627	0.7756	0.7839
0.1	0.6939	0.7629	0.7756	0.7837
0.25	0.6946	0.7627	0.7754	0.7842
0.5	0.6956	0.7638	0.7754	0.7844
1.0	0.6973	0.7649	0.7757	0.7845

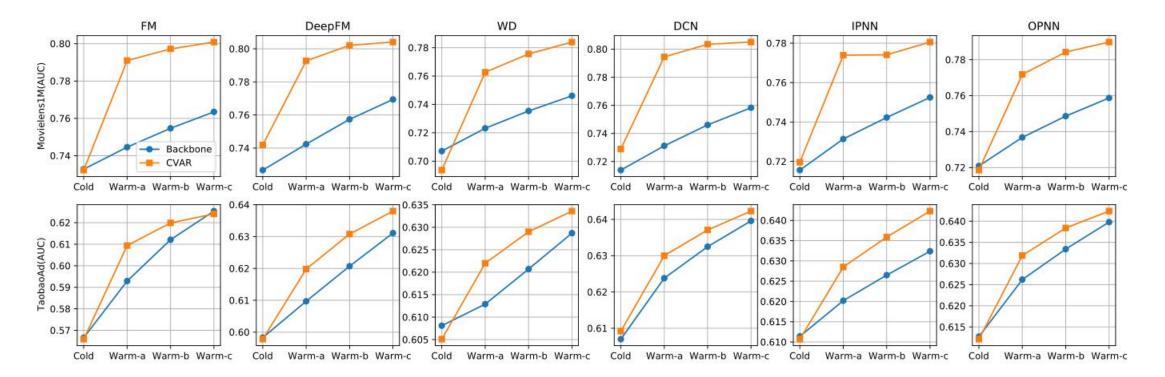


Figure 2: AUC curves through warming-up on two datasets, over six popular backbone models, three runs for each.

Table 3: Online A/B results of item groups with increasing warm-up level: *cold*, *warm-a*, *warm-b* and *warm-c*. Red results mean they are statistically significant (whose p-value in hypothesis testing [1] is stable less than 0.05.)

Metrics	Cold	Warm-a	Warm-b	Warm-c	Total	
Exposure Rate	+1.48%	-0.21%	-0.04%	+0.17%	2	
Watch Time	+2.49%	+2.90%	+1.40%	+0.39%	+0.38%	
Article Watch Time	+2.39%	+4.51%	+2.08%	+0.16%	+0.13%	
Video Watch Time	+2.60%	+1.78%	+0.72%	+0.68%	+0.66%	
Total Page Views	+4.46%	+2.87%	+1.42%	+0.62%	+1.09%	
Article Page Views	+3.58%	+3.37%	+1.74%	+0.31%	+0.82%	
Video Views	+5.84%	+2.25%	+1.05%	+1.01%	+1.35%	

Thank